metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.D5, C22⋊Dic5, C10.11D4, C22.7D10, (C2×C10)⋊4C4, C5⋊3(C22⋊C4), C10.16(C2×C4), (C2×Dic5)⋊2C2, C2.3(C5⋊D4), C2.5(C2×Dic5), (C22×C10).2C2, (C2×C10).7C22, SmallGroup(80,19)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.D5
G = < a,b,c,d,e | a2=b2=c2=d5=1, e2=b, ab=ba, eae-1=ac=ca, ad=da, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >
Character table of C23.D5
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 5A | 5B | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 10M | 10N | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 10 | 10 | 10 | 10 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | -1 | i | i | -i | -i | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | -1 | 1 | i | -i | -i | i | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | 1 | -1 | -i | -i | i | i | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | -1 | 1 | -i | i | i | -i | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 4 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | -2 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ13 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ14 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ15 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | 1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ16 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ17 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | 1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ18 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -ζ53+ζ52 | -ζ53+ζ52 | ζ54-ζ5 | -ζ54+ζ5 | ζ53-ζ52 | 1-√5/2 | 1+√5/2 | ζ54-ζ5 | -ζ54+ζ5 | ζ53-ζ52 | 1-√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | complex lifted from C5⋊D4 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | ζ54-ζ5 | -ζ54+ζ5 | -ζ53+ζ52 | ζ53-ζ52 | ζ54-ζ5 | 1+√5/2 | -1+√5/2 | ζ53-ζ52 | -ζ53+ζ52 | -ζ54+ζ5 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | complex lifted from C5⋊D4 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | ζ53-ζ52 | -ζ53+ζ52 | ζ54-ζ5 | -ζ54+ζ5 | ζ53-ζ52 | 1-√5/2 | -1-√5/2 | -ζ54+ζ5 | ζ54-ζ5 | -ζ53+ζ52 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | complex lifted from C5⋊D4 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -ζ54+ζ5 | ζ54-ζ5 | ζ53-ζ52 | -ζ53+ζ52 | -ζ54+ζ5 | 1+√5/2 | -1+√5/2 | -ζ53+ζ52 | ζ53-ζ52 | ζ54-ζ5 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | complex lifted from C5⋊D4 |
ρ23 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -ζ53+ζ52 | ζ53-ζ52 | -ζ54+ζ5 | ζ54-ζ5 | -ζ53+ζ52 | 1-√5/2 | -1-√5/2 | ζ54-ζ5 | -ζ54+ζ5 | ζ53-ζ52 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | complex lifted from C5⋊D4 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | ζ53-ζ52 | ζ53-ζ52 | -ζ54+ζ5 | ζ54-ζ5 | -ζ53+ζ52 | 1-√5/2 | 1+√5/2 | -ζ54+ζ5 | ζ54-ζ5 | -ζ53+ζ52 | 1-√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | complex lifted from C5⋊D4 |
ρ25 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -ζ54+ζ5 | -ζ54+ζ5 | -ζ53+ζ52 | ζ53-ζ52 | ζ54-ζ5 | 1+√5/2 | 1-√5/2 | -ζ53+ζ52 | ζ53-ζ52 | ζ54-ζ5 | 1+√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | complex lifted from C5⋊D4 |
ρ26 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | ζ54-ζ5 | ζ54-ζ5 | ζ53-ζ52 | -ζ53+ζ52 | -ζ54+ζ5 | 1+√5/2 | 1-√5/2 | ζ53-ζ52 | -ζ53+ζ52 | -ζ54+ζ5 | 1+√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | complex lifted from C5⋊D4 |
(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)
(1 14)(2 15)(3 11)(4 12)(5 13)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
(1 9)(2 10)(3 6)(4 7)(5 8)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 35 14 25)(2 34 15 24)(3 33 11 23)(4 32 12 22)(5 31 13 21)(6 38 16 28)(7 37 17 27)(8 36 18 26)(9 40 19 30)(10 39 20 29)
G:=sub<Sym(40)| (21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,14)(2,15)(3,11)(4,12)(5,13)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,35,14,25)(2,34,15,24)(3,33,11,23)(4,32,12,22)(5,31,13,21)(6,38,16,28)(7,37,17,27)(8,36,18,26)(9,40,19,30)(10,39,20,29)>;
G:=Group( (21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,14)(2,15)(3,11)(4,12)(5,13)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,35,14,25)(2,34,15,24)(3,33,11,23)(4,32,12,22)(5,31,13,21)(6,38,16,28)(7,37,17,27)(8,36,18,26)(9,40,19,30)(10,39,20,29) );
G=PermutationGroup([[(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40)], [(1,14),(2,15),(3,11),(4,12),(5,13),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)], [(1,9),(2,10),(3,6),(4,7),(5,8),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,35,14,25),(2,34,15,24),(3,33,11,23),(4,32,12,22),(5,31,13,21),(6,38,16,28),(7,37,17,27),(8,36,18,26),(9,40,19,30),(10,39,20,29)]])
C23.D5 is a maximal subgroup of
C23.1D10 C23⋊Dic5 C23.11D10 Dic5.14D4 C23.D10 D5×C22⋊C4 D10.12D4 Dic5.5D4 C20.48D4 C23.21D10 C4×C5⋊D4 C23.23D10 D4×Dic5 C23.18D10 C20.17D4 C23⋊D10 C20⋊2D4 Dic5⋊D4 C24⋊2D5 D6⋊Dic5 C30.38D4 A4⋊Dic5 C23.D25 D10⋊Dic5 C102⋊11C4 D10.D10
C23.D5 is a maximal quotient of
C20.55D4 C10.10C42 D4⋊Dic5 C20.D4 C23⋊Dic5 Q8⋊Dic5 C20.10D4 D4⋊2Dic5 D6⋊Dic5 C30.38D4 C23.D25 D10⋊Dic5 C102⋊11C4 D10.D10
Matrix representation of C23.D5 ►in GL3(𝔽41) generated by
40 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 40 |
40 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 40 | 0 |
0 | 0 | 40 |
1 | 0 | 0 |
0 | 37 | 0 |
0 | 0 | 10 |
32 | 0 | 0 |
0 | 0 | 10 |
0 | 37 | 0 |
G:=sub<GL(3,GF(41))| [40,0,0,0,1,0,0,0,40],[40,0,0,0,1,0,0,0,1],[1,0,0,0,40,0,0,0,40],[1,0,0,0,37,0,0,0,10],[32,0,0,0,0,37,0,10,0] >;
C23.D5 in GAP, Magma, Sage, TeX
C_2^3.D_5
% in TeX
G:=Group("C2^3.D5");
// GroupNames label
G:=SmallGroup(80,19);
// by ID
G=gap.SmallGroup(80,19);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-5,20,101,1604]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^5=1,e^2=b,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations
Export
Subgroup lattice of C23.D5 in TeX
Character table of C23.D5 in TeX